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Abstract
Fluorescence microscopy images are often taken at low
light and short exposure times to preserve the integrity
of cell samples. However, imaging under these condi-
tions leads to severely degraded images with low sig-
nal to noise ratios. To computationally restore these im-
ages, we introduce novel loss functions to denoise mi-
croscopy images. These loss functions will be folded
into the CARE algorithm. The results produced by this
modification will be evaluated against traditional TV fil-
tering and NL means techniques. The modified model
will also be compared against its CARE predecessor us-
ing standard image quality metrics.

Introduction
Fluorescence microscopy is vital for understanding pro-

cesses and structures at the cellular level. Because imaging
at the cellular level under strong lighting conditions or long
exposure times may damage the cell sample through pho-
totoxicity, fluorescence microscopy images need to be re-
stored. A safe way to image a cell is to use low light condi-
tions and/or low exposure times, which unfortunately lowers
the signal to noise ratio (Xing et al. 2017).

Figure 1: Fluorescence microscopy images taken of actin
under high light (left) and low light conditions (right)

Noise in an image depends on a combination of factors,
including exposure time and physical experimental condi-
tions. In fluorescence microscopy, noise is typically de-
scribed by a Poison-Gaussian model. There has been extens-
ive work done in image restoration through filtering noise
from microscopy images. These filtering techniques have
limitations, which call for a more generalized solution.

Deep learning methods have been successful in restoring
corrupted images, as well as in other image processing tasks
such as classification, segmentation, and object detection. A
widely used deep learning architecture in image processing
is a convolutional neural network (CNN). A CNN consists
of an input layer, hidden layers, and an output layer. Another
popular network in image processing is an autoencoder. Typ-
ically, autoencoders are used for denoising and reducing the
number of dimensions of input data (Xing et al. 2017).

Related Work
Deep learning approaches to image deblurring may in-

volve blind and non-blind image deconvolution. There are
a wealth of studies devoted to the non-blind image deconvo-
lution approach, but these networks are limited, as they rely
on information about the non-blurry image beforehand. By
contrast, blind deblurring models are more flexible since in-
formation about the non-blurry image is not required for the
network to deblur an input image.

In 2014, Xu et al. introduced a natural image deconvo-
lution that is data-driven and does not rely on traditional
assumptions. For example, generative models tend to as-
sume that noise in an image is identically and independ-
ently distributed, even if this assumption is not necessarily
true. Instead, this CNN was trained on images that were not
deblurred ahead of time and the network learned the decon-
volution operation without requiring information about the
original image. The main contribution of Xu et al. was devel-
oping this deep convolutional neural network (DCNN) that
consisted of two sub models—one for deconvolution and the
other for denoising. The models perform inverse filtering us-
ing large 1D kernels and the former sub model is pre-trained
to mimic Weiner deconvolution (Xu et al. 2014).

A major drawback of the previously discussed blind
DCNN was that it failed if the original image was not blurry.
To address this shortcoming, Conti et.al introduced a con-
volutional neural network that consisted of a regularization
term in the cost function. This improved model was able
to denoise a blurry image and maintain the quality of im-
ages that are not noisy. The major modifications made by
Conti et al. were that they used single 2D convolutional lay-
ers rather than 1D kernels for deblurring. The regularized
cost function was built using the results of a classification
network trained to distinguish blurry and non-blurry images
that had roughly 80 percent accuracy when evaluated(Conti,



Minucci, and Derakhshan 2017).

More recently, Weigert et al. published a series of image
restoration methods that succeeded in restoring seven im-
ages of various organisms (i.e. planaria flatworm, fruit fly
wings). The major contributions of this work include: gener-
ating training data without requiring manual labeling, replic-
ating live imaging for organisms in which live imaging had
once been near-impossible, and restoring microscopy im-
ages even when lighting conditions are reduced by 60-fold.
Weigert et al. demonstrated high quality results with restor-
ations of images containing Tribolium castaneum (red flour
beetle) and Schmidtea mediterranea (a flatworm commonly
known as planaria). This Content-Aware Image Restoration
(CARE) network is based on the U-Net network, which con-
sists of an encoder-decoder architecture. The only difference
between the CARE network and the U-net algorithm is that
the former outputs a per-pixel Laplace distribution whereas
the latter outputs one value per pixel. Although these res-
toration methods are promising, each pair of image content
and corruption requires a unique data set. Each model must
be retrained for an image of that particular content and cor-
ruption to be successfully restored (Weigert et al. 2017).

Modifying network architecture is a popular strategy to
achieve better performance. Another widely used approach
to this goal is data augmentation. Data augmentation is
widely used for image classification(Paulin et al. 2014), as
applying random transformations to training data effectively
provides more data for a network to learn from. Not sur-
prisingly, training with large data sets produces high-quality
image restorations (Burger, Schuler, and Harmeling 2012).
Typical transformations for data augmentation include trans-
lation, rotation, and scaling. Augmenting data is a manual
process in which these image transformations are specified
by humans. To automate this process, Jain et al. developed
an unsupervised learning procedure that generated training
samples using different noise models (Jain and Seung 2009).
Likewise, Hauberg et al. developed a learned augmentation
scheme that outperforms manual augmentation of MNIST
data when used as training for a multilayer perceptron and a
CNN (Hauberg et al. 2016).

Lastly, altering the loss function is a viable strategy,
though this approach tends to be overlooked (Zhao et al.
2017). Typically, the mean absolute error and mean squared
error loss functions are employed in image processing net-
works (Zhao et al. 2017; Burger, Schuler, and Harmeling
2012; Agostinelli, Anderson, and Lee 2013; Chen et al.
2018). In 2017, Zhao et al. introduced a new loss function for
image restoration that combined the multi-scale SSIM (MS-
SSIM) metric with L1 loss. Without changing network ar-
chitecture, Zhao et al. demonstrated that by using this mixed
loss function, their fully convolutional neural network out-
performed state-of-the-art networks on tasks such as joint
denoising and demosaicking (Zhao et al. 2017). Drawing in-
spiration from this approach, we will replace the existing
Laplace loss function of the CARE network with a novel
loss function that enhances edge restoration in fluorescence
microscopy images.

Research Questions and Hypothesis
The questions we will address in this study are:

1. How well does the CARE network perform on our micro-
scopy data set?

2. How can we produce image restorations that are sharper
than those produced by CARE?

3. How does the network perform when it is trained on one
kind of sample and tested on a different kind of sample?

4. Can we reliably restore live cell images?

We hypothesize that our improvement on the method of Wei-
gert et al. will restore microscopy images that are less blurry
and more detailed than the restorations of the original CARE
model. Thus, our model will be a more faithful solution
compared to the denoising approach of Weigert et al.

Proposed Implementation
We modified the loss function of the CARE network in
hopes of producing restorations that are more faithful to
ground truth images. Ultimately, the objective of this study
is to restore microscopy images free of artifacts and without
loss of fine details.

Experimental Setup
The data set we used to train the standard CARE model is

High Low, which consists of over 400 fluorescent images of
actin and mitochondria, in addition to 170 images of dendra.
All images in the High Low data set were taken using an
Olympus IX83 with 60X/1.3NA objective lens. The Andor
Zyla CMOS camera was used to image cell organelles.

For all of our experiments, we first observed the beha-
vior of the network and assessed the quality of the network
without loss function modifications. These results were then
compared to results produced by training the CARE network
using our FFT and bandpass cost functions. These experi-
ments include restorations of actin imaged at 1 millisecond
and 10 milliseconds, restorations of mitochondria imaged
at 1 millisecond, model mismatch experiments, and restora-
tions of dendra imaged at 10 milliseconds. We use the term
model mismatch to indicate experiments in which images
of one type of cell content are used for training while im-
ages of another type of cell content are used for testing. For
example, we used images of mitochondria as training data
for the CARE algorithm, and subsequently tested the model
using noisy images of actin. Our most recent experiments in-
volved restorations of dendra imaged at 10 milliseconds us-
ing dendra imaged at 10 and 400 milliseconds as the training
set. The results of these experiments were evaluated using
peak signal to noise (PSNR) and structural similarity (SSIM)
image quality metrics.

To conduct our experiments, we used the default config-
urations of the standard CARE model. The training batch
size was 16 images, the number of training epochs was 100,
the initial learning rate was 0.0004, and the iterations per
epoch (training steps) was 400. The training images were
2048 pixels wide, and 2048 pixels high, with 1 grayscale
channel. In sampling the training images, 800 patches per
image of size 64 pixels by 64 pixels were used to train the



CARE model. In all experiments, images were split accord-
ing to the ratio 4:1 for training and validation respectively.
Nine or ten images were used for testing in all experiments.
Table 1 provides an overview of the experiments we per-
formed along with their abbreviations.

table
Method

The denoising method of Weigert et al. is successful when
restoring images with up to 60-fold reduction in light ex-
posure. Beyond that range, however, we found the CARE
algorithm is not able to restore images with fine details. In

Figure 2: Ground truth image of actin (left) and CARE res-
toration of actin using Laplace loss (right)

the CARE network, the popular stochastic gradient descent
Adam optimizer is used to minimize a Laplace loss function.

Llaplace(θ) =
1

T

1

N

T∑
t=1

N∑
i=1

| yti − µθ(xt)i|
σθ(xt)i

+ log σθ(x
t)i

where T indicates the number of training images, N in-
dicates the number of pixels per image, yt corresponds to
the ground truth pixel value, and xt corresponds to the input
pixel. µ and σ correspond to the mean and variance of the
predicted pixel distribution.

Loss function modification
The restored images produced by this algorithm suffered
from blurriness and lack of fine details. In response to this
issue, we tested various loss functions tailored to preserve
edges. Despite the strong performance of the combined MS-
SSIM and L1 loss function introduced by Zhao et al. (2017),
we found a similar combined MS-SSIM and L1 loss func-
tion yielded poor results when applied to the CARE net-
work. Incorporating the SSIM metric into the loss func-
tion resulted in slightly better performance according to the
SSIM metric, which was expected. In addition to SSIM-
based loss functions, edge detection techniques were applied
to the loss function. We obtained poor results by using the
Sobel operator in the loss function. The loss functions that
we introduce in this study are the FFT and bandpass loss
functions. So far, these two loss functions have produced the
most faithful results for denoising images in our High Low
data set compared to other loss functions we designed.

The FFT loss function is similar to mean absolute er-
ror with one key difference. Instead of taking differences
between corresponding pixel values, the FFT loss function

considers differences between per-pixel frequencies repres-
ented in the 2D Fourier transforms of the restored image and
its corresponding ground-truth image.

LFFT =
1

N ×M

M∑
j=1

N∑
i=1

| fri,j − fi, jt|

where f represents the frequency at the (i,j) pixel in the
Fourier transforms of the restored and ground truth images
(represented by r and t, respectively). M and N represent
the M x N pixels in an image. To preserve edges, the band-
pass loss function was designed to emphasize high frequen-
cies. This loss function (Lb) consists of taking a difference
of Gaussians, with σ1 = 0.5 and σ2 = 5. These sigma val-
ues were chosen arbitrarily, and may be adjusted through
trial and error. In the equation below, Gti,j,σ1

denotes Gaus-
sian blur applied to the ground truth image with standard de-
viation σ1 and Gti,j,σ2

denotes Gaussian blur applied to the
ground truth image with standard deviation σ2. Likewise,
Gri,j,σ1

denotes Gaussian blur applied to the restored im-
age with standard deviation σ1 andGri,j,σ2

denotes Gaussian
blur applied to the restored image with standard deviation σ2

Lb =
1

N ×M

M∑
j=1

N∑
i=1

| (Gti,j,σ1
−Gti,j,σ2

)− (Gri,j,σ1
−Gri,j,σ2

)|

Results

Restoration of actin

To restore actin imaged using 1 millisecond of exposure
time, the CARE algorithm was trained using sixty pairs of
actin images taken using 1 millisecond and 100 milliseconds
of exposure time. After the model was trained, nine testing
images of actin taken at 1 millisecond of exposure time were
restored using the CARE prediction function. The follow-
ing table displays peak signal to noise ratios and structural
similarity measurements of the initial input images and the
corresponding restored images. In the following tables, the
PSNR and SSIM values of the input image are displayed
in the Input column , with the rest of the column headings
indicating the loss function used (Laplace, FFT, and band-
pass).

Actin Input Laplace FFT BP

0 26.690 35.869 35.676 35.304
1 28.322 35.256 33.500 35.559
2 29.074 39.915 39.747 39.833
3 33.395 42.284 42.140 43.218
4 31.766 39.827 40.741 40.657
5 32.937 39.892 40.534 40.406
6 31.452 38.235 36.589 38.297
7 27.677 36.458 33.306 35.642
8 32.679 41.278 39.607 40.980

Mean 30.444 38.779 37.982 38.877

Table 2: PSNR values produced by loss functions (AA)



Encoding Training Set (Exposure Time) Input Ground Truth (Exposure Time)
Low SNR High SNR

MM Mitochondria (1 ms) Mitochondria (100 ms) Mitochondria (1 ms) Mitochondria (100 ms)
AA Actin (1 ms) Actin (100 ms) Actin (1 ms) Actin (100 ms)
MA Mitochondria (1 ms) Mitochondria (100 ms) Actin (1 ms) Actin (100 ms)
AM Actin (1 ms) Actin (100 ms) Mitochondria (1 ms) Mitochondria (100 ms)
DDS Dendra (10 ms) Dendra (400 ms) Dendra (10 ms) Dendra (400 ms)
AAS Actin (10 ms) Actin (400 ms) Actin (10 ms) Actin (400 ms)
AAE Actin (1 ms) Actin (100 ms) Actin (1 ms) Actin (100 ms)

Table 1: Summary of experiments

Actin Input Laplace FFT BP

0 0.447 0.895 0.907 0.914
1 0.838 0.951 0.947 0.954
2 0.707 0.967 0.970 0.966
3 0.829 0.976 0.981 0.979
4 0.831 0.976 0.978 0.977
5 0.870 0.977 0.980 0.979
6 0.895 0.972 0.968 0.977
7 0.846 0.956 0.930 0.953
8 0.889 0.980 0.979 0.977

Mean 0.795 0.961 0.960 0.964

Table 3: SSIM values produced by loss functions (AA)

Restoration of mitochondria

An identical experiment was performed to restore mitochon-
dria images taken with 1 millisecond of exposure time. Sixty
pairs of mitochondria were used for training and validation
while ten pairs of mitochondria images were used for test-
ing. The following tables display results of this experiment.

Mitochondria Input Laplace FFT BP

0 32.073 41.059 40.644 40.213
1 31.624 34.233 34.474 36.011
2 32.167 39.965 40.171 39.937
3 27.757 35.261 36.709 35.068
4 34.548 41.057 41.583 40.292
5 31.943 35.940 36.585 35.206
6 32.995 40.704 41.148 39.873
7 34.169 39.387 40.401 39.163
8 33.385 40.702 40.773 39.253

Mean 32.296 38.701 39.165 38.335

Table 4: PSNR values produced by loss functions (MM)

Mitochondria Input Laplace FFT BP

0 0.805 0.983 0.985 0.985
1 0.907 0.981 0.985 0.977
2 0.797 0.981 0.983 0.984
3 0.605 0.957 0.965 0.961
4 0.886 0.988 0.989 0.988
5 0.844 0.977 0.977 0.978
6 0.830 0.985 0.983 0.985
7 0.895 0.984 0.986 0.983
8 0.844 0.987 0.984 0.986

Mean 0.824 0.980 0.982 0.981

Table 5: SSIM values produced by loss functions (MM)

Model mismatch to restore actin

Actin imaged at 1 millisecond was restored using the stand-
ard CARE model trained with mitochondria images. As
CARE is a content-aware network, the PSNR and SSIM val-
ues produced by the algorithm were less faithful to ground
truth images compared to previous experiments (MM and
AA). The following tables display results of this model mis-
match experiment.

Actin Input Laplace FFT BP

0 26.690 36.666 36.060 35.363
1 28.322 30.095 30.557 30.661
2 29.074 37.591 38.431 36.413
3 33.395 38.911 40.440 37.258
4 31.766 36.436 38.631 36.627
5 32.937 36.125 39.027 35.660
6 31.452 33.647 34.482 33.029
7 27.677 28.937 29.406 27.911
8 32.679 35.851 36.631 35.440

Mean 30.444 34.918 35.963 34.262

Table 6: PSNR values produced by loss functions (MA)



Actin Input Laplace FFT BP

0 0.448 0.936 0.930 0.937
1 0.838 0.937 0.954 0.941
2 0.707 0.957 0.963 0.958
3 0.829 0.967 0.974 0.962
4 0.831 0.958 0.972 0.962
5 0.870 0.959 0.975 0.956
6 0.895 0.964 0.974 0.962
7 0.846 0.919 0.939 0.895
8 0.889 0.971 0.976 0.967

Mean 0.795 0.952 0.962 0.949

Table 7: SSIM values produced by loss functions (MA)

Model mismatch to restore mitochondria
Mitochondria imaged at 1 millisecond were restored using
the standard CARE model trained with actin images. The
following tables display results of the second model mis-
match experiment.

Mitochondria Input Laplace FFT BP

0 32.073 39.803 40.825 40.779
1 31.624 35.938 34.370 35.862
2 32.167 39.416 39.808 39.666
3 27.757 34.052 35.616 35.641
4 34.548 40.982 40.920 41.938
5 31.943 36.055 36.485 36.923
6 32.995 38.463 40.084 39.956
7 34.169 40.389 40.016 41.037
8 33.385 39.696 40.299 40.401

Mean 32.396 38.311 38.714 39.134

Table 8: PSNR values produced by loss functions (AM)

Mitochondria Input Laplace FFT BP

0 0.805 0.977 0.982 0.983
1 0.907 0.978 0.984 0.977
2 0.797 0.977 0.981 0.980
3 0.605 0.942 0.953 0.955
4 0.886 0.985 0.987 0.987
5 0.844 0.974 0.977 0.978
6 0.830 0.971 0.982 0.980
7 0.895 0.983 0.985 0.984
8 0.844 0.974 0.983 0.982

Mean 0.824 0.973 0.979 0.979

Table 9: SSIM values produced by loss functions (AM)

Restoration of dendra
Dendra imaged at 10 milliseconds were restored using the
standard CARE model trained with dendra images. The
dendra samples were imaged at 200 timesteps, with each
timestep lasting 400 milliseconds. The following table dis-
plays average PSNR and SSIM results of denoising using
the Laplace, FFT, and bandpass loss functions.

Input Laplace FFT BP
PSNR 26.639 32.691 28.534 32.758
SSIM 0.570 0.897 0.846 0.909

Restoration of actin sequence

Actin imaged at 10 milliseconds were restored using the
standard CARE model trained with actin images. The
actin samples were imaged at 200 timesteps, with each
timestep lasting 400 milliseconds. Due to the large number
of samples restored (200 images), the following table dis-
plays average PSNR and SSIM results of denoising using
the Laplace, FFT, and bandpass loss functions.

Input Laplace FFT BP
PSNR 25.672 25.917 26.023 26.002
SSIM 0.837 0.872 0.874 0.874

Table 10: Average PSNR and SSIM values produced by loss
functions (AAS)

Restoration of extremely noisy actin

In our AAE experiment, actin imaged at 1 millisecond were
restored using the standard CARE model trained with actin
images. Microscope settings were altered prior to imaging
these actin samples to induce significant noise in these im-
ages (taken with 1 millisecond of exposure). The accompa-
nying table that displays these results will be included in a
future revision.

Discussion
The results of our study were analyzed using paired

sample t-tests with an alpha significance value of 0.05. We
demonstrate statistically significant results with respect to
SSIM measurements, particularly in model mismatch ex-
periments. The sequence of actin restorations (AAS) also
demonstrated statistically significant results. The table be-
low summarizes t-test results (p-values) for each experi-
ment. The PSNR and SSIM values obtained using the FFT
and bandpass loss functions were each evaluated against
PSNR and SSIM values obtained by the original Laplace
loss function.

Experiment FFT/Laplace BP/Laplace
PSNR SSIM PSNR SSIM

MM 0.03 0.150 0.264 0.426
AA 0.110 0.201 0.640 0.710
MA 0.016 0.007 0.311 0.311
AM 0.260 0.0008 0.002 0.008
DDS — — — —
AAS 1.509e-232 5.811e-205 4.055e-232 5.458e-199
AAE — — — —

The following table summarizes the average change in
PSNR and SSIM values organized by experiment descrip-
tion and loss function.



Metric Loss MM AA MA AM DD

∆PSNR
Laplace 6.405 8.336 4.474 6.015 DD

FFT 6.870 7.539 5.519 6.418 –
BP 6.039 8.434 3.819 6.838 –

∆SSIM
Laplace 0.157 0.166 0.157 0.150 DD

FFT 0.158 0.165 0.167 0.156 –
BP 0.157 0.169 0.154 0.155 –

Table 11: Average Increase in PSNR and SSIM

Further Research
To further evaluate our deep learning approach, we

will employ traditional filtering techniques (total variation
and non-local means) and compare our results with these
conventional practices using standard metrics (PSNR and
SSIM). The total variation minimization (TV) technique
restores images by minimizing a cost function. The TV
method smooths excess details while maintaining sharp
edges. The non-local means (NL means) filtering technique
finds the average of all pixels in an image, and makes
each pixel a linear combination of patches. Similar patches
are weighted more heavily than dissimilar patches (Buades,
Coll, and Morel 2005).

In the near future, we will train the CARE network while
varying the patch size of the training images to 32 x 32 and
128 x 128. By introducing different patch sizes for training,
the CARE network performance may improve. We would
also like to implement combined loss functions (FFT loss
combined with bandpass loss). Perhaps an adaptive, GAN-
based loss function may better outperform the current state-
of-the-art. To test the limits of our computational restoration
method, we will conduct future studies to determine what is
the lowest amount of light that can be used when imaging a
sample such that the image can successfully be restored by
our implementation?

Conclusion
The purpose and major contribution of this research is to

modify and improve existing restoration methods for fluor-
escence microscopy imaging. Compared to the Laplace loss
function, the results of this study indicate that there were
statistically significant improvements in image denoising us-
ing FFT loss and bandpass loss to train the CARE network.
Our model mismatch and actin sequence restoration exper-
iments yielded the most prominent statistically significant
results, which confirms that the CARE model generalizes
poorly when it is content-unaware. By developing ways to
denoise fluorescence microscopy images faithfully, signific-
antly less time and resources will be required to image 2D
structures.
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